A rip cut is a fundamental type of cut in wood parallel to its grain structure. Because the three projects in this series incorporate bending and twisting of their wood members (stressing the wood structure) to give them form, they all share the need for a consistent parallel grain and thus the rip cut was the primary process in producing the components. Without this consistent parallel grain or grain runout (where the grain runs off the edge of a board) the linear wood pieces tend to split and break. Certain measures can be taken to minimize this, such as selecting good boards or steaming the pieces prior to bending, but in the end it is a natural material and so limitations and potential flaws must be embraced. These projects aim to strike a balance between the craft and risk of working with such natural materials and the ‘control’ and precision of digital fabrication methods.

The three projects in this series – the LAMELLAE Screen, the STRAIN Lamp, and the SHEAF Lamp used wood from the three same walnut boards. For the largest – LAMELLAE Screen – slats were cut first, then the remaining stock was used to cut strips for STRAIN Lamp. The SHEAF Lamp was designed afterwards, specifically to make use of the off-cut or scrap pieces from the first two projects.

The LAMELLAE Screen builds on ideas explored in the LAMELLAE Series and is the first prototype taking these same ideas to a larger more spatial configuration. As a singular piece, it was designed as a small room divider/visual screen, leveraging the twisting capacity of the custom sliced walnut slats to modulate visibility, shadow, and depth. As a potentially larger system, the screen can be modified (through the parametric model) to accommodate any number of ‘local’ requirements such as level of visibility, density of slats, degree of twist, or amount of undulation. For this first prototype, the slats were formed as-is. By incorporating steaming to the process a higher degree of bending and forming could be achieved.

The STRAIN Lamp is a prototype exploring the steam bending process, material capacities (for bending, twisting, and translation) and their relationship to digital design. The name refers to both the stranded units of fabrication and the stress the material undergoes during the forming process. Early tests with the process provided feedback which informed a parametric model used to generate the formwork (armature ribs) for the walnut strands. Because the digital model does not fully simulate the material behaviors, it is only an assumption and a starting point. Parametric design is much about controlling specific variables and so the project begs the question – how can the material potential be fully exploited with the minimum amount of ‘control’ or ‘how much control is too much’?

Unlike the first two projects in this series, the design of the SHEAF Lamp emerged not as a formal or material exploration for its own sake, but from a desire to incorporate ‘waste’ or offcut pieces into an object, leveraging similar techniques as the other projects. As the name implies, it references a vertical bundle of strands (the offcut ¼” x ¼” walnut pieces were bound together in the shop to store and became the conceptual starting point). A simple strategy to ‘pinch’ and ‘pull’ the density of the bundle drove the design.